Solved Problems taken from:

http://course.ie.cuhk.edu.hk/~erg2310/

Courtesy of Prof. Chun-Kit CHAN

Problem 1

A sinusoidally modulated ordinary AM waveform is shown below.

(a) Determine the modulation index.
(b) Calculate the transmission efficiency.
(c) Determine the amplitude of the carrier which must be added to attain a modulation index of 0.3.
(a). Using $\left\{\begin{array}{l}s_{\max }=A_{c}\left(1+m_{a}\right) \\ s_{\min }=A_{c}\left(1-m_{a}\right)\end{array} \quad \therefore \quad A_{c}=6 \quad\right.$; the modulation index $m_{a}=\frac{1}{2}$
(b). $\mu=\frac{m_{a}{ }^{2}}{2+m_{a}{ }^{2}}=\frac{1}{9}$
(c). Using $m_{a}=\frac{a_{m}}{A_{c}}$, the new required carrier amplitude $A_{c}{ }^{\prime}=10$

So, the amplitude of the carrier should be added by 4 to achieve the 0.3 modulation index.

Problem 2

The efficiency μ of a single-tone AM signal is defined as the percentage of the total power carried by the sidebands, that is:

$$
\mu=\frac{P_{s i g}}{P_{t}} \times 100 \%
$$

where $P_{\text {sig }}$ is the power carried by the sidebands and P_{t} is the total power of the AM signal.
(a) Find μ for AM modulation index $m a=0.5$.
(b) Show that for a single-tone AM, $\mu \max$ is 33.3% at $m a=1$.
$P_{\mathrm{c}}=$ carrier power $=\frac{1}{2} A_{c}^{2} \quad ; P_{S}=$ sideband power $=\frac{1}{4} m_{a}^{2} A^{2}$

Thus, $\mu=\frac{P_{S}}{P_{t}}=\frac{m_{a}^{2}}{2+m_{a}^{2}}$
(a). For $m_{a}=0.5, \quad \mu=11.1 \%$
(b). $\mu_{\max }$ occurs at $m_{a}=1, \rightarrow \mathrm{y} \mu_{\max }=33.3 \%$

Problem 3

The output signal from an AM modulator is:

$$
s(t)=5 \cos (1800 \pi t)+20 \cos (2000 \pi t)+5 \cos (2200 \pi t)
$$

(a) Determine the modulation index.
(b) Determine the ratio of the power in the sidebands to the power in the carrier.
(a)

$$
\begin{aligned}
& s(t)=5 \cos (1800 \pi t)+20 \cos (2000 \pi t)+5 \cos (2200 \pi t) \\
& =20\left[1+\frac{1}{2} \cos (200 \pi)\right] \cos (2000 \pi t)
\end{aligned}
$$

Thus, modulation index is 0.5
(b) Carrier power $=200$

Sideband power $=25$
Sideband power to carrier power ratio $=0.125$

Problem 4

Assume that the transmitter circuitry limits the modulated output signal to a certain peak voltage value, say \boldsymbol{X} volts. By employing this transmitter, show that the sideband power of a DSB-SC signal with a peak voltage of \boldsymbol{X} is four times that of an AM (DSB-LC) signal having the same peak voltage and 100% modulation index, and is half that of a SSB-SC signal having the same peak voltage.
(1) DSB-SC: $s(t)=A x(t) \cos \left(2 \pi f_{c} t\right)$, peak voltage $=A \rightarrow A=X$
$\Rightarrow P_{s b}=\frac{X^{2}}{4} P_{x}$
(2) DSB-LC: $s(t)=A[1+x(t)] \cos \left(2 \pi f_{c} t\right)$, peak voltage $=2 A \rightarrow A=X / 2$
$\rightarrow P_{s b}=\frac{X^{2}}{16} P_{x}$
(3) SSB-SC: $s(t)=A x(t) \cos \left(2 \pi f_{c} t\right)-A \hat{x}(t) \sin \left(2 \pi f_{c} t\right)$
peak voltage $=A \sqrt{\overline{x^{2}(t)}+\overline{\hat{x}^{2}(t)}} \rightarrow A=X / \sqrt{\overline{x^{2}(t)}+\overline{\hat{x}^{2}(t)}}$
$P_{s b}= \begin{cases}\frac{X^{2}}{2} P_{x} & \text { for } \\ \sqrt{\overline{x^{2}(t)}+\overline{\hat{x}^{2}(t)}}=\sqrt{2} \\ X^{2} P_{x} & \text { for } \\ \sqrt{\overline{x^{2}(t)}+\overline{\hat{x}^{2}(t)}}=1\end{cases}$
Hence, the sideband power of a DSB-SC signal is four times that of an AM (DSB-LC) signal, and is half (or one-quarter) that of a SSB-SC signal.

Problem 5

A single-tone modulating wave $m(t)=A_{m} \cos \left(2 \pi f_{m} t\right)$ is used to generate the VSB modulated wave:

$$
s(t)=\alpha A_{m} A_{c} \cos \left[2 \pi\left(f_{c}+f_{m}\right) t\right]+A_{m} A_{c}(1-\alpha) \cos \left[2 \pi\left(f_{c}-f_{m}\right) t\right],
$$

where α is a constant ($\alpha \leq 1$), A_{c} is the amplitude of carrier, and f_{c} is the frequency of carrier.
(a) Express $s(t)$ in the form of $I(t) \cos \left(2 \pi f_{c} t\right)+Q(t) \sin \left(2 \pi f_{c} t\right)$, where $I(t)$ and $Q(t)$ are called the in-phase and quadrature components.
(b) What is the value of the constant α for which $s(t)$ reduces to a DSB-SC modulated wave?
(c) What are the values of the constant α for which $s(t)$ reduces to a SSB modulated wave?
(d) The VSB wave $s(t)$, plus a carrier $A_{c} \cos \left(2 \pi f_{c} t\right)$, is passed through an envelope detector. Determine the distortion produced.
(a). Expanding $s(t)$, we get

$$
s(t)=A_{m} A_{c} \cos \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{c} t\right)+A_{m} A_{c}(1-2 \alpha) \sin \left(2 \pi f_{m} t\right) \sin \left(2 \pi f_{c} t\right)
$$

(b). Because $s(t)=A_{m} A_{c} \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi f_{m} t\right)+A_{m} A_{c}(1-2 \alpha) \sin \left(2 \pi f_{c} t\right) \sin \left(2 \pi f_{m} t\right)$ When $\alpha=\frac{1}{2}$, the VSB is reduced to DSB-SC.
(c). When $\alpha=1$ or $\alpha=0$, the VSB is reduced to SSB-SC.
(d) the output from envelope detector:

$$
\begin{aligned}
& r(t)=A_{c}\left[1+A_{m} \cos \left(2 \pi f_{m} t\right)\right] \sqrt{1+\left[\frac{A_{m}(1-2 \alpha) \sin \left(2 \pi f_{m} t\right)}{1+A_{m} \cos \left(2 \pi f_{m} t\right)}\right]^{2}} \\
& \rightarrow d(t)=\sqrt{1+\left[\frac{A_{m}(1-2 \alpha) \sin \left(2 \pi f_{m} t\right)}{1+A_{m} \cos \left(2 \pi f_{m} t\right)}\right]^{2}}
\end{aligned}
$$

Problem 6

A radio receiver used in the AM system is shown below. The mixer translates the carrier frequency f_{c} to a fixed IF of 455 kHz by using a local oscillator of frequency $f_{L O}$. The broadcast-band frequencies range from 540 kHz to 1600 kHz .
(a) Determine the range of tuning that must be provided in the local oscillator (i) when $f_{L O}$ is higher than f_{c} (superheterodyne receiver) and (ii) when $f_{L O}$ is lower than f_{c}.
(b) Based on the results obtained in (a), explain why the usual AM radio receiver uses a superheterodyne system.

(a). When $f_{L O}>f_{C}$, the required tuning range of the local oscillator is $995 \mathrm{kHz}-2055 \mathrm{kHz}$.

When $f_{L O}<f_{C}$, the required tuning range of the local oscillator is $85 \mathrm{kHz}-1145 \mathrm{kHz}$.
(b) The frequency ratio, that is, the ratio of the highest $f_{\text {Lo }}$ to the lowest $f_{\text {Lo }}$, is 2.07 for $f_{L O}>f_{C}$ and 13.47 for $f_{L O}<f_{C} . \rightarrow f_{L O}>f_{C}$ (superheterodyne) is preferred.

Problem 7

A particular version of AM stereo uses quadrature multiplexing.
Specifically, the carrier $A_{c} \cos \left(2 \pi f_{c} t\right)$ is used to modulate the sum signal $m_{l}(t)=V_{o}+m_{L}(t)+m_{R}(t)$ where V_{o} is a DC offset included for the purpose of transmitting the carrier component, $m_{L}(t)$ is the left-hand audio signal, and $m_{R}(t)$ is the right-hand audio signal. The quadrature carrier $A_{c} \sin \left(2 \pi f_{c} t\right)$ is used to modulate the difference signal $m_{2}(t)=m_{L}(t)-m_{R}(t)$
(a) Show that an envelope detector may be used to recover the sum $m_{L}(t)+$ $m_{R}(t)$ from the quadrature-multiplexed signal. How would you minimize the signal distortion produced by the envelope detector?
(b) Show that a synchronous/coherent detector can recover the difference signal, $m_{L}(t)-m_{R}(t)$.
(c) How are the desired $m_{L}(t)$ and $m_{R}(t)$ finally obtained?

The transmitted signal is:
$s(t)=A_{c}\left[V_{0}+m_{L}(t)+m_{R}(t)\right] \cos \left(2 \pi f_{c} t\right)+A_{c}\left[m_{L}(t)-m_{R}(t)\right] \sin \left(2 \pi f_{c} t\right)$
(a) The envelope detection output: $r(t)=A_{c}\left(V_{0}+m_{L}(t)+m_{R}(t)\right) \sqrt{1+\left(\frac{m_{L}(t)-m_{R}(t)}{V_{0}+m_{L}(t)+m_{R}(t)}\right)^{2}}$

If we choose a large value of $\mathrm{V}_{0} \rightarrow r(t) \approx A_{c}\left(V_{0}+m_{L}(t)+m_{R}(t)\right)$
(b). Multiply $s(t)$ by $A_{c} \sin \left(2 \pi f_{c} t\right)$ and followed by a low-pass filter, $\left[m_{L}(t)-m_{R}(t)\right]$ is obtained.
(c). With the known values of $\left[m_{L}(t)+m_{R}(t)\right]$ and $\left[m_{L}(t)-m_{R}(t)\right]$, it is easy to get $m_{L}(t)$ and $m_{R}(t)$.

Problem 8

A normalized sinusoidal signal $a(t)$ has a bandwidth of $5,000 \mathrm{~Hz}$ and its average power is 0.5 W . The carrier $A \cos 2 \pi f c t$ has an average power of 50 W . Determine the bandwidth and the average power of the modulated signal if the following analog modulation scheme is employed:
(a) single-side band modulation with suppressed carrier modulation (SSB-

SC), which is generated by phase-shift method with the given carrier ;
(b) double-side band with suppressed carrier modulation (DSB-SC) ;
(c) AM or double-side band with large carrier (DSB-LC) with a modulation index of 0.8 .

As the average power of the carrier is:

$$
P_{c}=\frac{A^{2}}{2}=50, \text { so the } \mathrm{A}=\mathbf{1 0} .
$$

a) SSB-SC:

$$
\begin{aligned}
& s(t)=A a(t) \cos \left(2 \pi f_{c} t\right)-A \hat{a}(t) \sin \left(2 \pi f_{c} t\right) \\
& P=\overline{s^{2}(t)}=\frac{1}{2} A^{2} \times \overline{a^{2}(t)}+\frac{1}{2} A^{2} \times \overline{\hat{a}^{2}}(t)+0=A^{2} \times P_{a}=100 \times 0.5=50 \mathrm{w}
\end{aligned}
$$

Bandwidth is 5000 Hz .
b) DSB-SC:

$$
\begin{aligned}
& s(t)=A a(t) \cos \left(2 \pi f_{c} t\right) \\
& P=\overline{s^{2}(t)}=\frac{1}{2} A^{2} \times \overline{a^{2}(t)}=50^{*} 0.5=25 \mathrm{w}
\end{aligned}
$$

Bandwidth is 10000 Hz .
c) AM or DSB-LC:

$$
\begin{aligned}
& s(t)=A[1+0.8 a(t)] \cos \left(2 \pi f_{c} t\right) \\
& P=\overline{s^{2}(t)}=\frac{1}{2} A^{2}\left[1+0.8^{2} \times \overline{a^{2}(t)}\right]=\frac{1}{2} A^{2}\left[1+0.8^{2} \times P_{a}\right]=50 *[1+0.64 * 0.5]=66 \mathbf{w}
\end{aligned}
$$

Bandwidth is 10000 Hz .

Problem 9

Consider the following circuit:
(i) An upper-sideband single-sideband (SSB) can be generated by feeding a message signal $m(t)$ into the input port of the above circuit. This is known as phase-shifted method for SSB signal generation. Determine the modulated signal $s(t)$ at the output port.
(ii) Suggest one appropriate modification of the above circuit so that the modified circuit can be used to demodulate the upper-sideband SSB signal obtained in part
(b)(i) and retrieve the message signal $m(t)$. Prove and verify your modified circuit as an upper-sideband SSB signal demodulator.

Soln:

Proof:

$$
\begin{aligned}
\hat{s}(t)= & m(t) \cos \left(\omega_{c} t-\frac{\pi}{2}\right)-\hat{m}(t) \sin \left(\omega_{c} t-\frac{\pi}{2}\right) \\
= & m(t) \sin \left(\omega_{c} t\right)+\hat{m}(t) \cos \left(\omega_{c} t\right) \\
y(t) & =s(t) \cos \omega_{c} t+\hat{s}(t) \sin \omega_{c} t \\
& =\left(m(t) \cos \omega_{c} t \cos \omega_{c} t-\hat{m}(t) \sin \omega_{c} t \cos \omega_{c} t\right) \\
& +\left(m(t) \sin \omega_{c} t \sin \omega_{c} t+\hat{m}(t) \cos \omega_{c} t \sin \omega_{c} t\right) \\
& =m(t)\left(\cos ^{2} \omega_{c} t+\sin ^{2} \omega_{c} t\right) \\
& =m(t)
\end{aligned}
$$

Problem 10

Consider the following circuit with an input signal, $\boldsymbol{v}(\boldsymbol{t})$, an amplifier with $\operatorname{gain} \boldsymbol{K}$, a sinusoidal carrier signal at ω_{c}, and two nonlinear devices:

$A \cos \omega_{c} t$
(a) Express the output signal $\boldsymbol{s}(\boldsymbol{t})$ in terms of $\boldsymbol{v}(\boldsymbol{t}), \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{\operatorname { c o s }}\left(\omega_{c} \boldsymbol{t}\right), \boldsymbol{a}$ and \boldsymbol{b}.
(b) Determine the choice of the gain \boldsymbol{K} so that the above circuit performs as a DSB-SC modulator without output filtering.
(a)
$s(t)$
$=a^{*}\left[k\left(v+A \cos \left(w_{c} t\right)\right)\right]^{2}-b\left[v-A \cos \left(w_{c} t\right)\right]^{2}$
$=\left(a k^{2}-b\right) v^{2}+2 A v\left(a k^{2}+b\right) \cos w_{c} t+\left(a k^{2}-b\right) A^{2} c o$
(b) $k= \pm \sqrt{\frac{b}{a}}$.
(assume $\mathrm{ab}>0$)
(Just to make $a k^{2}-b=0$ is enough)
Remark 1: I noticed some students also require $2 A v\left(a k^{2}+b\right)=\mathrm{A}$ to hold in their solutions because they thought the standard form of DSB-LC is $A v(t) \cos w_{c} t$ and they just compare the two. That is not correct.

I want to point out that the "A" is just a constant, not definitely the same as the "A" in the standard form. It's OK only if it is a constant. The main spirit is to tell you it is constant.

Remark 2: K can be negative. I noticed some students ignore $k=-\sqrt{\frac{b}{a}}$ because it is negative and not suitable for amplifier.

For example, see the operator amplifier below,

